Mining of haplotype-based expressed sequence tag single nucleotide polymorphisms in citrus

Publication Overview
TitleMining of haplotype-based expressed sequence tag single nucleotide polymorphisms in citrus
AuthorsChen C and Gmitter FG.
TypeJournal Article
Journal NameBMC Genomics
Volume14
Year2013
Page(s)746
CitationChen C and Gmitter FG. Mining of haplotype-based expressed sequence tag single nucleotide polymorphisms in citrus. BMC Genomics. 2013. 14: 746.

Abstract

BACKGROUND: Single nucleotide polymorphisms (SNPs), the most abundant variations in a genome, have been widely used in various studies. Detection and characterization of citrus haplotype-based expressed sequence tag (EST) SNPs will greatly facilitate further utilization of these gene-based resources. RESULTS: In this paper, haplotype-based SNPs were mined out of publicly available citrus expressed sequence tags (ESTs) from different citrus cultivars (genotypes) individually and collectively for comparison. There were a total of 567,297 ESTs belonging to 27 cultivars in varying numbers and consequentially yielding different numbers of haplotype-based quality SNPs. Sweet orange (SO) had the most (213,830) ESTs, generating 11,182 quality SNPs in 3,327 out of 4,228 usable contigs. Summed from all the individually mining results, a total of 25,417 quality SNPs were discovered - 15,010 (59.1%) were transitions (AG and CT), 9,114 (35.9%) were transversions (AC, GT, CG, and AT), and 1,293 (5.0%) were insertion/deletions (indels). A vast majority of SNP-containing contigs consisted of only 2 haplotypes, as expected, but the percentages of 2 haplotype contigs varied widely in these citrus cultivars. BLAST of the 25,417 25-mer SNP oligos to the Clementine reference genome scaffolds revealed 2,947 SNPs had "no hits found", 19,943 had 1 unique hit / alignment, 1,571 had one hit and 2+ alignments per hit, and 956 had 2+ hits and 1+ alignment per hit. Of the total 24,293 scaffold hits, 23,955 (98.6%) were on the main scaffolds 1 to 9, and only 338 were on 87 minor scaffolds. Most alignments had 100% (25/25) or 96% (24/25) nucleotide identities, accounting for 93% of all the alignments. Considering almost all the nucleotide discrepancies in the 24/25 alignments were at the SNP sites, it served well as in silico validation of these SNPs, in addition to and consistent with the rate (81%) validated by sequencing and SNaPshot assay. CONCLUSIONS: High-quality EST-SNPs from different citrus genotypes were detected, and compared to estimate the heterozygosity of each genome. All the SNP oligo sequences were aligned with the Clementine citrus genome to determine their distribution and uniqueness and for in silico validation, in addition to SNaPshot and sequencing validation of selected SNPs.
Features
This publication contains information about 25,417 features:
Feature NameUniquenameType
trifloliata_62695_contig6393_p1140_GAtrifloliata_62695_contig6393_p1140_GAgenetic_marker
trifloliata_62695_contig6393_p1195_CGtrifloliata_62695_contig6393_p1195_CGgenetic_marker
trifloliata_62695_contig6393_p1215_CTtrifloliata_62695_contig6393_p1215_CTgenetic_marker
trifloliata_62695_contig6393_p1294_CTtrifloliata_62695_contig6393_p1294_CTgenetic_marker
trifloliata_62695_contig6393_p163_GCtrifloliata_62695_contig6393_p163_GCgenetic_marker
trifloliata_62695_contig6393_p192_GAtrifloliata_62695_contig6393_p192_GAgenetic_marker
trifloliata_62695_contig6393_p314_CGtrifloliata_62695_contig6393_p314_CGgenetic_marker
trifloliata_62695_contig6393_p64_TAtrifloliata_62695_contig6393_p64_TAgenetic_marker
trifloliata_62695_contig6393_p852_TAtrifloliata_62695_contig6393_p852_TAgenetic_marker
trifloliata_62695_contig6393_p998_TGtrifloliata_62695_contig6393_p998_TGgenetic_marker
trifloliata_62695_contig6395_p687_GCtrifloliata_62695_contig6395_p687_GCgenetic_marker
trifloliata_62695_contig6395_p813_GTtrifloliata_62695_contig6395_p813_GTgenetic_marker
trifloliata_62695_contig6396_p1156_AGtrifloliata_62695_contig6396_p1156_AGgenetic_marker
trifloliata_62695_contig6396_p423_AGtrifloliata_62695_contig6396_p423_AGgenetic_marker
trifloliata_62695_contig6396_p997_TGtrifloliata_62695_contig6396_p997_TGgenetic_marker
trifloliata_62695_contig640_p529_ATtrifloliata_62695_contig640_p529_ATgenetic_marker
trifloliata_62695_contig6402_p598_AGtrifloliata_62695_contig6402_p598_AGgenetic_marker
trifloliata_62695_contig6402_p757_GAtrifloliata_62695_contig6402_p757_GAgenetic_marker
trifloliata_62695_contig6404_p104_-Ctrifloliata_62695_contig6404_p104_-Cgenetic_marker
trifloliata_62695_contig6404_p414_TGtrifloliata_62695_contig6404_p414_TGgenetic_marker
trifloliata_62695_contig6404_p978_GAtrifloliata_62695_contig6404_p978_GAgenetic_marker
trifloliata_62695_contig6405_p961_CTtrifloliata_62695_contig6405_p961_CTgenetic_marker
trifloliata_62695_contig6419_p1046_CTtrifloliata_62695_contig6419_p1046_CTgenetic_marker
trifloliata_62695_contig6419_p1060_CTtrifloliata_62695_contig6419_p1060_CTgenetic_marker
trifloliata_62695_contig6419_p1100_CTtrifloliata_62695_contig6419_p1100_CTgenetic_marker

Pages

Stocks
This publication contains information about 23 stocks:
Stock NameUniquenameType
Alemow pepadaAlemow pepadaaccession
Amakusa tangorAmakusa tangoraccession
Carrizo CitrangeCarrizo Citrangeaccession
ClementineClementineaccession
CleopatraCleopatraaccession
Etrog 861-S1Etrog 861-S1accession
Fortune tangorFortune tangoraccession
Hassaku mandarinHassaku mandarinaccession
Hayata mandarinHayata mandarinaccession
Kankitsu Chukanbohon Nou 6 Gou tangorKankitsu Chukanbohon Nou 6 Gou tangoraccession
MexicanMexicanaccession
Orah tangorOrah tangoraccession
Palestine sweet limePalestine sweet limeaccession
PonkanPonkanaccession
Rangur limeRangur limeaccession
Rixiangxia mandarinRixiangxia mandarinaccession
Rough LemonRough Lemonaccession
Satsuma mandarinSatsuma mandarinaccession
summer orangesummer orangeaccession
Sweet OrangeSweet Orangeaccession
Swingle citrumeloSwingle citrumeloaccession
Tahiti limeTahiti limeaccession
Trifoliate orangeTrifoliate orangeaccession
Properties
Additional details for this publication include:
Property NameValue
URLhttp://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-14-746