Sodium carbonate and bicarbonate treatments induce resistance to postharvest green mould on citrus fruit

Publication Overview
TitleSodium carbonate and bicarbonate treatments induce resistance to postharvest green mould on citrus fruit
AuthorsYoussef K, Sanzani SM, Ligorio A, Ippolito A, Terry LA
TypeJournal Article
Journal NamePostharvest biology and technology
Year2014
Page(s)61-69
CitationYoussef K, Sanzani SM, Ligorio A, Ippolito A, Terry LA. Sodium carbonate and bicarbonate treatments induce resistance to postharvest green mould on citrus fruit. Postharvest biology and technology. 2014; 61-69.

Abstract

The aim of this study was to investigate the ability of two salts, sodium carbonate and bicarbonate, to activate defence mechanisms in citrus fruit against postharvest green mould caused by Penicillium digitatum. In particular, once there was confirmed salt antifungal activity in the absence of direct contact with the pathogen, changes in enzyme activity and expression levels of chitinase, β-1,3-glucanase, peroxidase and phenylalanine ammonia lyase (PAL), and phytoalexin (scoparone, scopoletin, umbelliferone) and sugar (glucose, fructose, sucrose) contents in treated oranges were analyzed. Overall, sodium carbonate and bicarbonate increases the activity of β-1,3-glucanase, peroxidase, and PAL enzymes in orange tissues. Gene expression analyses confirmed PAL up-regulation particularly 12h after treatment application. HPLC analyses of peel extracts showed increased amounts of the sugars and phytoalexins, compared to control tissues, with sucrose and scoparone being the most represented. The results suggest that, although salts exert a direct antifungal effect on P. digitatum, they are also able to induce citrus fruit defence mechanisms to postharvest decay. The defence response seems correlated with the up-regulation of the phenylpropanoid pathway, which has a role in the adaptation to various stresses. This response could result in natural reaction to wounding and pathogen attack in citrus, enhancing its protective effect. As a consequence, the fruit might have a better chance of successful defence against the decay.
Features
This publication contains information about 2,717 features:
Feature NameUniquenameType
MG702228MG702228.1region
MF095622MF095622.1region
MF095621MF095621.1region
MF095620MF095620.1region
MF155029MF155029.1region
MF155028MF155028.1region
MF155027MF155027.1region
MF155026MF155026.1region
MF034060MF034060.1region
MF152622MF152622.1region
MF152621MF152621.1region
MF152620MF152620.1region
KY814722KY814722.1region
MG594041MG594041.1region
MG594040MG594040.1region
MG594039MG594039.1region
MG594038MG594038.1region
MG594037MG594037.1region
KY626925KY626925.1region
KY612456KY612456.1region
KU664544KU664544.1region
KU664543KU664543.1region
KU664542KU664542.1region
KU664541KU664541.1region
KU664540KU664540.1region

Pages

Stocks
This publication contains information about 1 stocks:
Stock NameUniquenameType
ValenciaValenciaaccession
Properties
Additional details for this publication include:
Property NameValue
Publication TypeJournal Article
Publication Date2014
Published Location|||
Language Abbreng
Publication Model[electronic resource].
URLhttp://dx.doi.org/10.1016/j.postharvbio.2013.08.006
KeywordsCitrus, Penicillium digitatum, antifungal properties, defense mechanisms, direct contact, enzyme activity, fructose, fruit peels, gene expression, glucose, high performance liquid chromatography, oranges, pathogens, peroxidase, phenylalanine ammonia-lyase, postharvest diseases, protective effect, scopoletin, sodium carbonate, sucrose